Engineering Modified Bt Toxins to Counter Insect Resistance
Mario Soberón, et al.
Science 318, 1640 (2007);
DOI: 10.1126/science.1146453

The following resources related to this article are available online at www.sciencemag.org (this information is current as of October 8, 2009):

Updated information and services, including high-resolution figures, can be found in the online version of this article at:
http://www.sciencemag.org/cgi/content/full/318/5856/1640

Supporting Online Material can be found at:
http://www.sciencemag.org/cgi/content/full/1146453/DC1

A list of selected additional articles on the Science Web sites related to this article can be found at:
http://www.sciencemag.org/cgi/content/full/318/5856/1640#related-content

This article cites 29 articles, 11 of which can be accessed for free:
http://www.sciencemag.org/cgi/content/full/318/5856/1640#otherarticles

This article has been cited by 20 article(s) on the ISI Web of Science.

This article has been cited by 9 articles hosted by HighWire Press; see:
http://www.sciencemag.org/cgi/content/full/318/5856/1640#otherarticles

This article appears in the following subject collections:
Genetics
http://www.sciencemag.org/cgi/collection/genetics

Information about obtaining reprints of this article or about obtaining permission to reproduce this article in whole or in part can be found at:
http://www.sciencemag.org/about/permissions.dtl
mediated IRIF formation by RAP80 and conjugated ubiquitin. Indeed, RNF8 was essential for IRIF formation in both cases (Figs. 3F and 4A, and fig. S10A). Because RAP80 is not required for 53BP1 focus formation after IR (14) and 53BP1 is not needed for RAP80 IRIF (fig. S10B), these results indicated that RNF8 acts downstream of MDC1 to promote at least two types of IRIF: those containing 53BP1 and those containing BRCA1. In support of this model, mutation of the TQXF motifs in MDC1 also impaired BRCA1 and conjugated ubiquitin IRIF (fig. S11).

RNF8 can bind to multiple E2-conjugating enzymes to catalyze both K63- and K48-linked ubiquitin chains at DSB sites. These findings are consistent with data indicating that RNF8 is responsible for formation of K63-linked ubiquitin chains at DSB sites. More importantly, as UBC13 physically interacts with RNF8 to catalyze K63-linked ubiquitin chains (27), the available data imply that RNF8 promotes recruitment of the RAP80-BRCA1 complex and 53BP1 to DSB sites, thereby enhancing DNA-damage checkpoint events and promoting cell survival (Fig. 4E).

Our results identify mammalian RNF8 as an important component of the DDR. Specifically, RNF8 binds to ATM-target motifs on MDC1, thus recruiting RNF8 to DSB sites. RNF8 then triggers the formation of ubiquitin conjugates that promote recruitment of the RAP80-BRCA1 complex and 53BP1 to DSB sites, thereby enhancing DNA-damage checkpoint events and promoting cell survival (Fig. 4E).

References and Notes
3. T. Stiff et al., Cancer Res. 64, 2390 (2004).
20. V. Plans, M. Guerra-Rebollo, T. M. Thomson, Oncogene, in press. Published online 3 September 2007 (10.1038/sj.onc.1210782).
24. I. Hickson et al., Cancer Res. 64, 9152 (2004).
28. We thank members of the Durocher and Jackson laboratories for input on the manuscript and M. Vojdovic for experimental assistance. We also thank A. C. Gingras for the stable YFP-RNF8 line, KuDOS Pharmaceuticals for providing inhibitors and reagents, and Abcam for the MDC1 pT719 antibody. This work was supported by grants from the Canadian Institutes of Health Research (CIHR) to D.D. and by funding from Cancer Research UK and the European Union (S.P.). N.K.K. is a Canada postdoctoral fellow and an alumnus of the Excellence in Radiation Research for the 21st Century training program; F.D.S. holds a Terry-Fox studentship from the National Cancer Institute of Canada; S.N. is a Gail-Poskins Fellow and is supported by the Mitsubishi Pharma Research Foundation. D.D. is a Canada Research Chair (Tier II) in Proteomics, Functional Genomics, and Bioinformatics.

Supporting Online Material
www.sciencemag.org/cgi/content/full/1150034/DC1
Materials and Methods
Figs. S1 to S14
References
4 September 2007; accepted 5 November 2007
Published online 15 November 2007;
10.1126/science.1150034
Include this information when citing this paper.

Engineering Modified Bt Toxins to Counter Insect Resistance
Mario Soberón,1* Liliana Pardo-López,1 Idalia López,1 Isabel Gómez,1 Bruce E. Tabashnik,2 Alejandra Bravo1*

The evolution of insect resistance threatens the effectiveness of Bacillus thuringiensis (Bt) toxins that are widely used in sprays and transgenic crops. Resistance to Bt toxins in some insects is linked with mutations that disrupt a toxin-binding cadherin protein. We show that susceptibility to the Bt toxin Cry1Ab was reduced by cadherin gene silencing with RNA interference in Manduca sexta, confirming cadherin’s role in Bt toxicity. Native Cry1A toxins required cadherin to form oligomers, but modified Cry1A toxins lacking one α-helix did not. The modified toxins killed cadherin-silenced M. sexta and Bt-resistant Pectinophora gossypiella that had cadherin deletion mutations. Our findings suggest that cadherin promotes Bt toxicity by facilitating toxin oligomerization and demonstrate that the modified Bt toxins may be useful against pests resistant to standard Bt toxins.

The toxins produced by Bacillus thuringiensis (Bt) kill some major insect pests, such as mosquitoes and crop-feeding caterpillars but are harmless to vertebrates and most other organisms (1). Transgenic corn and cotton, which kill caterpillars (lepidopteran larvae) (7). Cry1A toxins bind to the extracellular domain of cadherin proteins that traverse the insect larval midgut membrane (14). Disruption of Bt toxin binding to midgut receptors is the most common mechanism of insect resistance (6). Mutations in the midgut cadherins that bind Cry1Ac are linked with and probably cause resistance in at least three lepidopteran pests of cotton (5, 10, 12).

Two hypotheses proposed to explain how Cry1A toxins function are the pore-formation model and the signaling model (15, 16). These theories share initial steps: Cry1A protoxins are ingested, solubilized in the gut, and cleaved by midgut proteases such as trypsin to yield activated 60-kD monomeric toxins that bind to cadherin with high affinity (14). The signaling model, derived from studies of insect cell cultures, suggests that after protease-activated monomeric toxins bind to cadherin, initiation of a magnesium-dependent signaling pathway causes cell death (16). In contrast, on the basis of results from in vitro experiments and bioassays, the pore-formation model proposes that protease-activated monomers bind to cadherin to facilitate protease cleavage of the N terminus of the toxin, including helix α-1 of domain I (17, 18). This cleavage induces the assembly of oligomeric forms of the toxin, which have increased binding affinity to secondary receptors,

1Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca 62250, Morelos, Mexico. 2Department of Entomology, University of Arizona, Tucson, AZ, USA.
*To whom correspondence should be addressed. E-mail: bravo@ibt.unam.mx (A.B.); mario@ibt.unam.mx (M.S.)
including glycosylphosphatidylinositol-anchored proteins, aminopeptidase N, and alkaline phosphatases (15, 19). After oligomers bind to secondary receptors, they create pores in the midgut membrane that cause osmotic shock and cell death (15).

According to the pore-formation model, the binding of protease-activated toxin to cadherin is essential for the removal of helix α-1, which in turn promotes oligomerization. Therefore, we hypothesized that modified Cry1Ab and Cry1Ac toxins lacking helix α-1 (referred to hereafter as Cry1AbMod and Cry1AcMod) could form oligomers without cadherin. To test this hypothesis, we compared oligomerization of native and modified Cry1Ab and Cry1Ac in the presence and absence of toxin-binding cadherin fragments. Toxins were activated by trypsin to mimic the protease activation that occurs in the insect gut. Previous work shows that trypsin-activated Cry1Ab forms 250-kD oligomers in the presence of Manduca sexta cadherin fragments containing toxin-binding regions corresponding to cadherin repeats 7 and 11 or a single-chain antibody (scFv73) that mimics these cadherin toxin-binding regions (17, 20). We found that trypsin-activated Cry1Ab and Cry1Ac formed oligomers in the presence of a protein fragment corresponding to M. sexta cadherin repeat 12 (CADR12), an important toxin-binding region (21), but not without cadherin or with cadherin repeat 9 (CADR9), a region that does not bind toxin (21) (Fig. 1). In contrast, trypsin-activated Cry1AbMod and Cry1AcMod formed oligomers without cadherin, although not as efficiently as the wild type with CADR12 (Fig. 1).

We used RNA interference (RNAi) to reduce production of cadherin protein (Fig. 2 and fig. S1) and decrease the susceptibility of M. sexta larvae to Cry1Ab. Larvae injected with either 1 μg of cadherin double-stranded RNA (dsRNA) or water only (control) ate a diet treated with 20 ng of Cry1Ab protoxin/cm². After 3 days, survival was 92% for 48 RNAi-treated larvae versus 0% for 48 control larvae (chi-square test, P < 0.001).

The next experiment showed that cadherin-silenced M. sexta larvae were much more susceptible to Cry1AbMod than to Cry1Ab (fig. S2). Confirming the results described above, the survival of larvae fed a diet treated with 20 ng of Cry1Ab protoxin/cm² was higher for 48 RNAi-treated larvae (92%) than for 48 control larvae (2%) (chi-square test, P < 0.001). However, on a diet with 5 ng of Cry1AbMod protoxin/cm², 48 RNAi-treated larvae had only 2% survival, which is significantly lower than the aforementioned 92% survival of 48 RNAi-treated larvae fed a diet treated with 20 ng of Cry1Ab protoxin/cm² (chi-square test, P < 0.001).

We also tested modified and native Cry1A toxins against larvae of a resistant strain (AZP-R) and a susceptible strain (APHIS-S) of the cotton bollworm, Pectinophora gossypiella.

Fig. 1. Oligomer formation by native and modified Bt toxins. Cadherin fragments added correspond to regions that bind toxin (CADR12, lanes 2 and 6) and do not bind toxin (CADR9, lanes 3 and 7). Western blots were probed with monoclonal antibodies to Cry1Ab (lanes 1 to 4) or to Cry1Ac (lanes 5 to 8).

Fig. 2. Effect of RNAi on cadherin protein expression in M. sexta larvae. Western blots were tested for the M. sexta cadherin protein (BT-R1) and for an 80-kD brush-border membrane vesicle protein (BBMV). Lanes 1 to 5: Control larvae injected with water only and fed a diet without toxin. Lanes 6 to 12: Larvae injected with 1 μg of BT-R1 dsRNA and fed a diet with 20 ng of Cry1Ab/cm².

Fig. 3. Responses of susceptible (APHIS-S) and resistant (AZP-R) pink bollworm larvae to native toxins [Cry1Ab and Cry1Ac (left**) and modified toxins [Cry1AbMod and Cry1AcMod (**right**)].**

<table>
<thead>
<tr>
<th>Table 1. Modified toxins Cry1AbMod and Cry1AcMod kill pink bollworm larvae resistant to Cry1Ab and Cry1Ac.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toxin</td>
</tr>
<tr>
<td>Cry1Ab</td>
</tr>
<tr>
<td>Cry1Ab</td>
</tr>
<tr>
<td>Cry1AbMod</td>
</tr>
<tr>
<td>Cry1AbMod</td>
</tr>
<tr>
<td>Cry1Ac</td>
</tr>
<tr>
<td>Cry1Ac</td>
</tr>
<tr>
<td>Cry1AcMod</td>
</tr>
<tr>
<td>Cry1AcMod</td>
</tr>
</tbody>
</table>

The resistant strain was AZP-R; the susceptible strain was APHIS-S. 5LC50 of larvae in micrograms of protoxin per milliliter of diet; 95% fiducial limits (FL) are shown in parentheses when available. 6LC50 of resistant strain divided by LC50 of susceptible strain. 7The highest concentration tested (100 μg of protoxin/ml of diet) killed only 20% of larvae. The highest concentration tested (300 μg of protoxin/ml of diet) killed only 23% of larvae.
Genetically Determined Differences in Learning from Errors

Tilmann A. Klein,1* Jane Neumann,1 Martin Reuter,2 Jürgen Hennig,3 D. Yves von Cramon,1,4 Markus Ullsperger1,4*

The role of dopamine in monitoring negative action outcomes and feedback-based learning was tested in a neuroimaging study in humans grouped according to the dopamine D2 receptor gene polymorphism DRD2-TAQ-IA. In a probabilistic learning task, A1-allele carriers with reduced dopamine D2 receptor densities learned to avoid actions with negative consequences less efficiently. Their posterior medial frontal cortex (pMFC), involved in feedback monitoring, responded less to negative feedback than others’ did. Dynamically changing interactions between pMFC and hippocampus found to Underlie feedback-based learning were reduced in A1-allele carriers. This demonstrates that learning from errors requires dopaminergic signaling. Dopamine D2 receptor reduction seems to decrease sensitivity to negative action consequences, which may explain an increased risk of developing addictive behaviors in A1-allele carriers.

“...you learn from your mistakes...” people say. We usually learn from both positive and negative action outcomes, which induce reinforcement of successful and avoidance of erroneous behavior, respectively (1). The relative amount of learning from successes and errors varies across individuals as a result of disease or pharmacological intervention (2). Can even our genetic makeup influence the way we learn from errors? An important factor in the use of negative and positive feedback for learning seems to be the neurotransmitter dopamine (3–5). A human genetic polymorphism (DRD2-TAQ-IA) is known to modulate dopamine D2 receptor density. The A1 allele is associated with a reduction in D2 receptor density by up to 30% (6–8). This reduction has been linked to multiple addictive and compulsive behaviors (9, 10), which suggests some insensitivity to negative consequences of self-destructive behavior. This might be linked to...